Reusing Proofs when Program
Verification Systems are Modified

Bernhard Beckert, Thorsten Bormer,
and Vladimir Klebanov
vladimir@uni-koblenz.de

November 8, 2005

KQY ..when Verification Systems are Modified 0Oo0o0o0owm?0d

vladimir@uni-koblenz.de

Context: The K3 Project

0O cHaMERs 7

University of Chalmers University University of
Karlsruhe (TH) of Technology Koblenz

www.key-project.org

Kg” ..when Verification Systems are Modified o o0ooo0oows?d

www.key-project.org

The KeY System

Components:

= (Case tool (Borland Together Architect, Eclipse)
= Spec. authoring tools

= Verification middleware

= |nteractive/automated theorem prover

Input
Java program
OCL/JML

Output
Proof in Dynamic Logic

5% 000 O

The Problem

Stored proof objects
+
Modified proof system

Claim 1: Affects all proof systems

5% 000 O

Changes in...

= Logic Syntax

= The Taclet Language
= Parser/Disambiguation

KgY

Ooo0oogoao

Changes in...

= Logic Syntax

- exists x:int.prop(x)

= The Taclet Language
= Parser/Disambiguation

KgY

Ooo0oogoao

Changes in...

= Logic Syntax

- exists x:int.prop(x)
\exists java.lang.Object o; prop(o).

= The Taclet Language
= Parser/Disambiguation

5% 000 O

Changes in...

= Logic Syntax

- exists x:int.prop(x)
\exists java.lang.Object o; prop(o).

« <program>prop

= The Taclet Language
= Parser/Disambiguation

5% 000 O

Changes in...

= Logic Syntax

- exists x:int.prop(x)
\exists java.lang.Object o; prop(o).
« <program>prop

\<prop\>formula

= The Taclet Language
= Parser/Disambiguation

5% 000 O

Changes in...

= Logic Syntax

- exists x:int.prop(x)

\exists java.lang.Object o; prop(o).

« <program>prop
\<prop\>formula
in order to allow a<b in place of 1t (a,b)

= The Taclet Language
= Parser/Disambiguation

KgY

Ooo0oogoao

Changes in the Logical Structure of the Rules

I' F ((a>b) = (w1l = true; w)p)A
(=(a > b) — (w1l = false; w)o)
' W (ml=a>buw)p

' - if(a > b)
(m | = true; w)pelse (w | = false; w)ofi
' - (ml=a>bw)

Kg” ..when Verification Systems are Modified o o0ooo0oos?d

Changes in the Logical Structure of the Rules

15:concrete _ impl _ 1 15:ifthenelse _ true
16:greater _ than

17:concrete _not _ 1

18:concrete_impl_2

19:concrete _and _ 3

Kg” ..when Verification Systems are Modified 0O o000 Oom?0O

Change of Prover Interna

= Non-determ. formula/branch ordering
= Non-determ. source model link

= Internal data structure change

Kg” ..when Verification Systems are Modified o o0ooo0oos?d

Changes in Java Formalization

I'y a =null - (7 NPE; w)¢
I'y a# null A (i <0V i>alength) - (m AOBE; w)¢
I'y a#nullNi>0A1i<a.length F {ali] :=val}(mw w)¢
I' - (7 alil=val w)¢

', a=null - (7 NPE; w)¢
I') a#null AN (1 <0Vi2>alength) - (m AOBE; w)¢
[, a #null Nt > 0Nt < a.length A\ =storable(val,a) = (m ASE; w)d|
I'y a# null ANi > 0Ai < a.length|\storable(val, a)l + {ali] ;= val}{m w)ep
I' - (7 alil=val w)¢

Kg” ..when Verification Systems are Modified o o0ooo0oows?d

Changes in Java Formalization...

Claim 2: ...are inevitable

Remedies:

= Formal rigor? (not rigorous)
= Paying attention?

- What does y=x++; do?

- What does x=x++; do?

= Cross-checking

KgY

Ooo0oogoao

The Problem (Recap)

Available

Proof system S,
Proof system S
Proof P; for Sy

Needed
Proof P2, for S5

Claim 3: This is not a problem of (meta-)logics

5% 000 O

The Solution

P; is correct for Sy
P, will be correct for Sy (guaranteed by S5)

We are building a proof search procedure.

5% 000 O

Our Solution Foundation

Proof Reuse for Deductive Program Verification
[Beckert, Klebanov @SEFM 2004], implemented in KeY

Observation: Every rule application has a focus:

'y b=TRUE F (7 p w)o
T, b=FALSE - (7 q w)e
I' = (m if(b) p else q w)¢

[I ldentify reusable subproofs
[Similarity-guided proof replay

5% 000 O

Example: Integer Arithmetics in Java

Valid for Java integers

MAX_INT + 1 = MIN_INT
MIN_INT#(—1) = MIN_INT
dr,y. (xt Z0ANy #ZO0ANxz*xy =0)

Not valid for Java integers
Ve.dy.y > «x
Not a sound rewrite rules for Java integers

r+1>y+1 ~ x>y

KgY

Ooo0oogoao

Possible Arithmetics Treatment

= The mathematical way: unsound
= The Java way: very difficult to reason about

= The KeY way:

[1 Show the program correct with math. semantics
[1 Show that no overflow occurs at every step

5% 000 O

Example: A Charge Card

public static void charge(int credit) {
try {
if (balance+credit > maxBalance)
throw new IllegalArgumentException();
else
balance = balance + credit;
} catch(IllegalArgumentException ex) {

+
+

Invariant property: Is balance < maxBalance always true?

5% 000 O

Demo Charge Card

[1 Correct w.r.t. math. semantics?
[Correct w.r.t. overflow checking semantics? [
[Fix bug, now correct

Unaffected proof parts are reused from step to step.

5% 000 O

Thank You!

Questions?

TOC

kg

Context: The K& Project [
The KeY System [J

The Problem [J

Changes in...

Changes in the Logical Structure of the
Rules [J

Changes in the Logical Structure of the
Rules [J

Change of Prover Interna [
Changes in Java Formalization [

Changes in Java Formalization... [J
The Problem (Recap) [

The Solution [

Our Solution Foundation [

Example: Integer Arithmetics in Java [J
Possible Arithmetics Treatment [
Example: A Charge Card [

Demo Charge Card [

Thank You! [

..when Verification Systems are Modified 0Oo0o0o0owm?0d

